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If material balances are taken around each nth stage and around the first n stages in aN-stage 
cascade, a set of N linear and N nonlinear equations with 2N concentration variables is obtained. 
On substitution of the general solution of the linear equations into the nonlinear ones the resulting 
set of N nonlinear equations is solved by an iteration method using linear programming technique. 

There are two models commonly used for the description of flow of phases in a coun
tercurrent equipment: the so-called diffusion model suitable for differential contact 
equipment and so-called back-flow model suitable for stage equipment. 

If the equilibrium relationship is linear, the solution of mass transfer problem in either of these 
models can be expressed in analytical forms, which are summarized in a paper of Hartland and 
Mecklenburgh1 . As far as more general cases are concerned, several numerical methods for the 
solution of mass transfer in the back-flow model are available. The simple boundary iteration 
method conSists of guessing the concentrations in both phases at one end of the contactor and 
calculating the concentration profile from stage to stage to the other end of the contactor. A new 
guess of the initial values must be made and the calculation repeated until the boundary conditions 
are satisfied. Mecklenburgh and Hartland2 have shown that, because of its instability, this 
method is reliable only when the back-mixing is high in one phase or completely absent from one 
phase. The mentioned authors proposed the so-called unsteady state procedure consisting of for
mulating this problem in unsteady state and integrating the resulting differential equations with 
respect to time until the profiles become steady. This procedure requires minimum amount 
of computer storage but tends to converge slowly if high accuracy is required. 

By writing material balance equations of each stage of a N-stage cascade for feed and solvent 
phase separately, a set of 2N nonlinear equations is obtained. Prochazka and Landau3 derived 
expressions for the coefficients of the system matrix using the concept of stage efficiency. In general 
case of nonlinear equilibrium, these coefficients are dependent on the concentration profiles 
and hence an iteration procedure is needed. McSwain and Durbin4 have formulated the expres
sions for the variable coefficients of the resulting quidiagonal matrix system by means of the dec 
fined curvarature of the equilibrium relationship. Using the modified Newton-Raphson technique 
combined with Gaussian elimination procedure for matrix inversion, they have achieved a satis
factory convergence of the solution. 

The presented method is based on the solution of N nonlinear equations by means 
of iterative linear programming technique. , The reduced set of N nonlinear equations 
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FIG. 1. ModeJ of Countercurrent Cascade with Back-Flows 

is obtained after the elimination of N concentration variables from the set of 2N 

properly formulated material balance equations. 

Formulation of Material Balances 

Schematic representation of the back-flow model with variable flow of phases and 
variable back-flow is shown in Fig. 1. The solute material balance of the feed phase 
in nth stage of the N stage cascade is expressed by the following equation: 

Taking the material balance so that its envelope encloses the x-phase inlet and cuts 
between stage nand n + 1, we get 

where Xo and YN + 1 are known inlet concentrations. Eqs (1) and (2) are applied for 
each stage including both end stages of the cascade with respect to the boundary 
conditions 

(3) 

In case of constant flows of phases, when 

Fn = F = const. , Sn = S = const., F/S = Q, (4) -(6) 

we define the back-flow coefficients 
(7) 

(8) 
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and the mass transfer number 

t = KaV/F. (9) 

Using dimensionless concentration variables 

(10), (11) 

we can rearrange Eqs (1), (2) and (3) into 

(12) 

1 + fn+lXn+l - (1 + fn+l)Xn - (l/Q) Y1 - (Sn/Q) Yn + (l/Q)(l + sn) Yn+ 1 = 0, 
'. (13) 

(14) 

Calculation Procedure 

As it is apparent from Eqs (12) and (13), this way of formulating material balances 
leads to a set of 2N equations, from which N are nonlinear of the type (12) and N 
linear of the type (13). The set of N linear equations may be solved generally with re
spect to Xn , which results in 

N 

Xn = L An.kUk , (15) 
k=n 

where 

(16) 

and 

(17) 
k 

An.k = An,n n Urn/1 + frn+l) , k = n + 1, n + 2, .. , N, n = 1,2, ... N . 
m=n+l 

(18) 

On substitution of expressions (15) into Eq. (12) we get the set of nonlinear equations 

N+l 
Fn(Y) == Y1 + QX:(Yn) + L CkYk - Q = 0, (19) 

k=n-l 
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where 

1+sn- 1 1+t+/n+1sn 
C= - --+ -

n t 1 + In+1 t' 

1 ( In + 1 ) 1 + Sn 
Cn+1 = - 1 + In+1 1 + Sn - i + In+2 Sn+1 - -t- ' 

Ck = An ,k-1 (1 + Sk-1 - 1 +I;k+l Sk) for k > n + 1, 

Ik = 0 for k > Nand k = 1; Sk = 0 for k ~ Nand k = 0 . 

Y denotes here a vector (Ylo Y2 , •• • YN) • 

If the equilibrium relationship is expressed as 

Eq. (19) takes the form 

N+l 
Fn(Y) == Y1 + QbYn + QBY; + I CkYk - Q = 0, (19') 

k=n-1 

where B = cXo. 
Values of Yn giving the concentration profiles in the solvent phase are obtained 

by the solution of the set of equations (19) or (19'). Knowing the end concentrations 
Y1 , YN + 1, we can calculate XN from the relation 

(21) 

The concentration profile in the feed phase can then be determined from Eqs 
(15)-(18). 

The whole problem is thus reduced to the solution of the set of nonlinear equations 
(19) or (19'). From the point of convergency, it has proved convenient to apply the 
method published previouslyS, which uses the linear programming technique, for this 
purpose. 

The calculation procedure can be summarized as follows: 

A. Given N, Q, YN+1' In (n = 2,3, ... N), Sn (n = 1,2, ... N - 1), t, X + = X+(Y). 0 
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B. Find the starting approximation of Y from 

Y(O) = Q_ (Q_ Y )~ 
n N+l N (22) 

and let Y = y(O) 

C. Calculate FnCY) from Eq. (19) or (19'). Denote all those functions Fn(Y)' for which 

(if any) as Fly), (r = r l' '2 ' . . . 'OJ; 1 ~ OJ ~ N) and all those functions FiY) , for which 

as Fs(Y) (s = sl' s2' . . . sp; 1 ~ P ~ N; P + OJ = N). Choose as Fa.(Y) one function of all 
Fly) which satisfies the condition 

(23) 

D. Solve the LP problem: Find values of vector g (gl' g2' . . . gN) which yields minimum of the 
function* 

(take sign + if Fa.(Y) > 0 

and sign - if Fly) < 0) 

at the restrictions 

and 

r = rl' '2' . .. rOJ; 1 ~ OJ < N 

(if any, i.e. if OJ < 0). 

Igjl ~ 1 j= 1,2, ... N** 

The general form of the functions chosen for the solution of the LP-problem is derived 
from the functions FiY) = 0 as 

, _ _ dX:(Yn) N 

fn(Y) =gl + Q dY
n 

gn 4;:=El Ckgk = O. 

In the computing program the substitution 

gj = gj + 1; j = 1,2, '" N 

is used. 

That leads to the restrictions 
gj ~ and gj ~ 2 , 

which are more convenient for computations than the restrictions jgjj ~ 1 mentioned above. 
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E. Determine the least root t > 0 of the equation 

F,/'i+ gt)= O. 

F. Calculate the new values of variables 

G. Let Y = Y'(YL Y2, ... YN), return to C. and stop the calculation if iFn(Y)i < 0 for all n, 
i.e. (J) = N. The calculation of the X-profile by the Eqs (15)-(18) follows. 

EXAMPLE 

A. N = 4; Q = 0-4; Xo = 4; YN+l = 0; In = 1 (n = 2,3,4); Sn = 0·5 (n = 1,2,3); t = 5; x+ = 
= by + cy2; b = 1; c = 0·2; 0 = 0·0010. 

B. Starting approximation (Eq. (22» 

y(o) = 0.4 _ 0.4 ~. y (O) = 0·4· y(O) - 0.3· y(O) - 0.2· y(O) - 0·1 
n ·4,1 ,2- ,3 - ,4 - · 

C. Set of nonlinear equations (Eq. (19'»: 

B = 0·2 X 4 = 0·8 

F/Y) == 1·95Y1 + 0'32yl- 0·925Y2 - 0·3125Y3 - 0·1875Y4 - 0-4 = 0 

F2 (Y) == 0·9Y1 + 1-05Y2 + 0·32Yi - 0·925Y3 - 0·375Y4 - 0-4 = 0 

F3(Y) == Y1 - 0·1 Y2 + 1-05Y3 + 0·32YS- 1·05Y4 - 0-4 = 0 

F4(Y) == Y1 - 0·1 Y3 + 0·7Y4 + 0·32yl- 0-4 = 0 

Fl (y(O » = + 0·07245 ( IF1 (y)(O» 1 > 0) 

F2(Y(0» = + 0·08l30 ( IF2(y(0»1 > 0) 

F3(Y(0» = +0·08780 (IF3(y)(0» 1 > 0) 

F4(Y(0» = +0·05320 (IF4(Y(0» I > 0) ... Fa(Y) = F4(Y) 

D. Solution of the LP problem 

u(l) = + [gl - 0·lg3 + (0·7 + 2 X 0'32Y~0» g4] J: minimum at the restrictions 

gj ~ I}. 
_gj ~ 1 ] = 1,2,3,4 

gives values of vector g(1): 

g\l) = -1; g~1) = +1; g(3) = +1; g~1) = -1. 

E. Fa(Y(O) + g(1)t) = F4(Y(0) + g(l)t) = 

= (0·4 - I) - 0·1(0·2 + I) + 0·7(0·1 - I) + 0·32(0·1 - 1)2 - 0·4 = 0 

The least root 1 > 0 of this equations is t = 0·0287. 
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F. Thus the approximation of Y = y(l) = yeO) + g(l) • t, i.e. YP) = 0·3713; y~1) = 0·3287; 
y~l) = 0.2287; Yi1 ) = 0·0713. 

C 1• 

Fl y«l») = -0-02073 

F2 y«l») = +0·07559 

F 3(y(1») = +0-12045 

F4 (y(1») = -0-00003 

( IF1(y(1»)1 > c5) .•• Fr/Y) = F1(Y) 

(IF2(y(1»)1 >c5) 

(IF3 (y(1») I > c5) 

<IF4 (y(1»)1 < -c5) ••• F4 (y(1») = 0 

D1 • Solution of the LP problem 

u(2) = - [(1 -95 + 2 X 0-32y\1)) Ul - 0-925U2 - 0-3125U3 - 0-1875U4] b minimum 
at the restrictions 

Uj ~ 1}_ 
-Uj ~ 1 ] = 1,2,3,4 

and 

gives values of vector g(2): 

Ul = +0·6456; U2 = -1; U3 = -1; U4 = -1. 

E1. From Fl (y(l) + g(2)t) = ° 
t = 0·0074 

Fl. Thus the approximation of Y = y(2), i.e. yF) = 0·3761; Y[2) = 0-3213; y~2) = 0-2213; 
y~2) = 0-0639; etc. 

The results of all particular approximations of the solution are summarized in the Table on 
p.2089. 

More than 50 problems have been solved using computer Tesla 200 in order 
to check the convergence of the proposed method. Folowing range of the parameters 
has been used: number of stage 4-20, back-flow coefficients 0-10, mass transfer 
number 0·1-100. The evaluation of the course of computation of particular problems 
has shown that the number of iterations and the computing time increases appro
ximately with the square of the number of stages while the proportionality constant 
depends on the required accuracy of the solution. A change in accuracy of one order 
causes approximately a 30 per cent change in the number of iterations. Computing 
time of one iteration amounts to about 2N, seconds the number of iterations falls 
within N to 2N. 

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973) 



Calculation of Mass Transfer in a Back-Flow Model 

TABLE 

Number 
of approx. 

° 

2 

4 

y(i) 

0·4 
0·3 
0·2 
0·1 

0·3713 
0·3287 
0·2287 
0·0713 

0·3761 
0·3213 
0·2213 
0·0639 

0·3686 
0·2900 
0·2526 
0·0783 

0·3434 
0·2536 
0·1703 
0·1009 

+0·0724 
+ 0·0813 
+0·0878 
+0·0532 

-0·0207 
+ 0·0756 
+ 0·1 204 
-0·0000 

+ 0·0003 
+ 0·0802 
+ 0·1249 
+ 0·0000 

+ 0·0004 
+0·0001 
+ 0·1430 
+ 0·0001 

+ 0·0006 
+ 0·0005 
+0·0002 
+ 0·0003 

j(i+l) 

"":"1 

+ 1 
+ 1 
-1 

+ 0·6456 
- 1 
-1 
-1 

-0·2403 
-1 

+ 1 
+ 0·4593 

- 0·3064 
- 0·4419 
-1 
+ 0·2751 

2089 

0·0287 

0·0074 

0·0313 

0·0823 

Using the 4th approximation Y1 = 0·3434, Y2 = 0·2536; Y3 = 0·1703; Y4 = 0·1009, as the solu
tion, we obtain from Eqs (15)-(18) XI = 0·5034; X2 = 0·3437; X3 = 0·2243; X4 = 0·1415. 

Overall balance check (Eq. (21): 

LIST OF SYMBOLS 

a specific interfacial area 

X4 = 1 - ~ (0·3434 - 0) = 0·1415. 
0·4 

b, c constants in equilibrium relationship 
E back-flow in feed phase 
f back-flow coefficient in feed phase 
F flow of feed phase 
g elements of direction vector g 
K mass transfer coefficient related to feed phase 
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stage number counted from feed phase inlet 
N number of stages 
R back-flow in solvent phase 

back-flow coefficient in solvent phase 
S flow of solvent phase 

step size in LP problem 
objective function in LP problem 

V volume of a stage 
x solute concentration in feed phase 
X dimensionless solute concentration in feed phase 
x + solute concentration in feed phase in equilibrium 
X+ dimensionless solute concentration in feed phase in equilibrium 
y solute concentration in solvent phase 
Y dimensionless solute concentration in solvent phase 
o positive number characterizing the accuracy of the calculation 

Subscript 

stage number 

Superscript 

iteration number 
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